
Abstract In wireless mesh networks, delay and reliability

are two critical issues in the support of delay-sensitive

applications. Due to sleep scheduling designed for energy

efficiency, a node along an end-to-end path needs to wait

for its next hop to wake up before it can transmit, which

incurs extra delay. In addition, because of unreliable

wireless communications, a node may not successfully

receive the packet even when it is in active mode. In this

paper, we propose a coded anycast packet forwarding

(CAPF) scheme for both unicast and multicast communi-

cations such that the delay can be reduced and the reli-

ability can be improved. We theoretically analyze the

impact of nodes’ awake probability and the link loss

probability on the end-to-end delay and the reliability. A

tradeoff between the end-to-end delay and the reliability is

also investigated. Simulation results demonstrate that

CAPF provides a flexible mechanism to make good delay-

reliability tradeoff and is effective to reduce the end-to-end

delay and enhance the reliability.

Keywords Wireless mesh networks � Anycast �
Unicast � Multicast � Coding

1 Introduction

Recently, wireless mesh networks (WMNs) have emerged as

a promising technology to provide the broadband network

services. Compared with infrastructure-based networks,

WMNs have advantages such as easy deployment, flexible

network architecture, self-configuration, and many more.

With the increase in both wireless channel bandwidth and the

computational capability of wireless devices, WMNs now

can be used to support delay-sensitive applications such as

video streaming or interactive gaming. Such delay-sensitive

applications require that the data content should be propa-

gated to the destination node(s) in a timely fashion.

The wireless devices in WMNs, however, are usually

powered by batteries, and as such energy consumption

becomes a critical issue, particularly when low-end devices

such as sensors or smartphones are used as mesh nodes. As

a common practice to save energy, sleep scheduling (i.e.,

let the devices go to sleep whenever they become idle) has

been broadly used, for example, in wireless sensor net-

works [1, 2] and DigiMesh [3] or ZigBee [4] based WMNs.

While sleep scheduling can save energy, it may incur extra

delay because a node along an end-to-end path may need to

wait for its next hop to wake up before it can transmit. Such

a waiting delay could be intolerable for delay-sensitive

applications. In addition, wireless channel is usually

unreliable, and packet retransmission to improve reliability

can have a negative impact on the end-to-end delay guar-

antee. To sum up, reducing end-to-end delay and guaran-

teeing reliable data delivery are two contradicting core

challenges in WMNs.

X. Wang � Y. Xu

Department of Computer Science, University of Science

and Technology of China, Hefei, China

e-mail: wxiumin2@student.cityu.edu.hk

Y. Xu

e-mail: ylxu@ustc.edu.cn

X. Wang � J. Wang

Department of Computer Science, City University

of Hong Kong, Kowloon, Hong Kong

e-mail: jianwang@cityu.edu.hk

K. Wu (&)

Department of Computer Science, University of Victoria,

Victoria, Canada

e-mail: wkui@cs.uvic.ca

To reduce the end-to-end delay, an interesting method is

to transmit packets with anycast [5]. Instead of having one

designated next hop under the traditional packet forward-

ing schemes, each intermediate node maintains multiple

next hops in its forwarding set. The sending node only

needs to wait for any one of the next hops to wake up

before it can transmit the packet. The end-to-end delay is

thus reduced for the waiting delay at each hop. Neverthe-

less, existing anycast schemes assume reliable radio

channels and ignore packet losses [5].

To deal with the unreliable channels, packet retrans-

missions based on the feedback from the receiving nodes

are usually adopted. In delay-sensitive applications such as

multimedia streaming, however, in-time packet delivery is

much more important since late packets may be useless.

We hence should care more about the end-to-end delay as

long as the data content can be correctly delivered with a

high probability. Due to this reason, TCP-like end-to-end

feedback control for reliable per packet delivery is gener-

ally avoided for delay-sensitive applications. Following the

similar spirit, per-hop retransmission due to channel errors

may be also undesirable.

By allowing multiple next hop nodes to receive packets,

anycast opens the good opportunities for reducing end-

to-end delay and in the meantime achieves a high packet

delivery ratio. Anycast alone, however, lacks a control

knob that can be used to tune the balance between the end-

to-end delay and the reliability. We are thus motivated to

design a good mechanism to enhance reliability while the

end-to-end delay is effectively controlled.

In this paper, to reduce the end-to-end delay and

improve the reliability, we propose using coded anycast

packet forwarding (CAPF) scheme in unreliable WMNs for

unicast and multicast. To be specific, instead of designating

one determined next hop at each step, any active node in a

forwarding set can be the candidate to propagate the

packet. A sending node can forward the packet once any

one of the next hops in its forwarding set wakes up. In

addition, with coding, the destination node can decode the

native packets once it receives a certain number of coded

packets propagated from the source node.

Recently, coding, e.g., source coding and network cod-

ing [6], has received extensive research attention in the

networking area, and it has been shown that coding can

improve network reliability by reducing the number of

packet retransmissions in wireless lossy networks [7–9].

Our work differs from the previous literature in that pre-

vious work is mainly focused on the traditional packet

forwarding scheme, i.e., a given single path for unicast or a

given multicast tree for multicast [9]. In contrast, with

anycast packet forwarding scheme, the next hop for each

step is not designated but is determined by the stochastic

sleep scheduling. Thus, the derivation of the delay and the

reliability with coded anycast schemes needs to be recon-

sidered. The previous literature on anycast [5] has tried to

minimize the delay in low duty-cycle wireless network.

However, the existing work assumes packets are not coded

and wireless channels are reliable [5]. While network

coding based opportunistic routing [10, 14] is similar to our

work, the underlying routing structure in [10, 14] is dif-

ferent and does not take advantages of anycast. To the best

of our knowledge, no previous work has considered the

coded anycast packet forwarding schemes for unicast as

well as multicast to better trade off the end-to-end delay

and the reliability.

The main contributions of our work are summarized as

follows.

(1) We study the coded anycast packet forwarding

scheme from the aspects of both end-to-end delay

and reliability in unreliable WMNs.

(2) We theoretically derive the end-to-end delay and the

reliability for the unicast communication with our

coded anycast packet forwarding scheme. The simu-

lation results confirm the advantages of coded anycast

packet forwarding method compared to other packet

forwarding schemes.

(3) We also study the coded anycast packet forwarding

scheme in multicast case. The simulation results also

confirm its advantages in both end-to-end delay and

reliability.

The rest of the paper is organized as follows. We first

introduce related work in Sect. 2. Section 3 includes the

network model. The coded anycast packet forwarding

scheme is presented in Section 4. In Sect. 5, we theoreti-

cally analyze the end-to-end delay, segment delay, and the

reliability of the proposed scheme. The results for perfor-

mance evaluation are presented in Sect. 6. Finally, we

conclude the paper in Sect. 7.

2 Related work

In this section, we review the related work of anycast

packet forwarding schemes and network coding.

Recently, researchers have proposed anycast packet

forwarding schemes in WMNs [11] to improve system

efficiency. Instead of designating one next hop for each

step, anycast packet forwarding scheme exploits the spacial

diversity of the wireless medium by maintaining multiple

next hops in its forwarding set. With coordination between

nodes, the next hop that hears the packet and has the

highest priority (determined by some rules) in the for-

warding set is selected to forward the packet.

Most of the previous anycast work focuses on the for-

warding set selection and next hops’ priority assignment.

1274

ExOR [11] selects the forwarding sets and prioritizes the

next hop based on the link cost information, e.g., ETX.

Zorzi and Rao [12] proposed GeRaF scheme, which

determines the forwarding set and the next hop’s priority

according to the geographic positions of nodes.

The delay performance with anycast packet forwarding

scheme in low duty-cycle wireless networks has been

studied in [5, 12]. The work in [5] proposed a dynamic

programming based approach to obtain the minimum end-

to-end delay from all the sensor nodes to the sink, by

iteratively selecting the forwarding set and assigning the

next hops’ priorities. However, they did not give the the-

oretical derivation about the end-to-end delay impacted by

the sleep scheduling and unreliable wireless channel. The

work in [12] studied the end-to-end delay and the energy

consumption of the GeRaF scheme. However, their work is

based on the assumption that each node’s sleep/wake-up

state follows a deterministic duty cycle, and they do not use

coding to enhance reliability.

Network coding [6] based opportunistic routing has

been studied in recent years [10, 14]. With random network

coding, opportunistic routing allows all the overhearing

next hops in the forwarding set to send their coded packets,

which are generated by combining the new received

packets with the existing packets in their buffers. However,

the network coding based opportunistic routing may not be

effective for the delay-sensitive applications because it

allows all the overhearing next hops to send their coded

packets, which incurs extra delay for scheduling these next

hops.

The reliability gain of network coding has been studied

recently [7–9]. In unicast, the work in [7] has confirmed

that network coding can increase the reliability by reducing

the number of transmissions per packet. In multicast, the

work in [8, 9] showed that network coding improves net-

work reliability. Ghaderi et al. [9] considered different

reliable mechanisms based on ARQ and network coding for

a given multicast tree topology, and showed that network

coding achieves the best performance in terms of the

required number of transmissions. However, none of the

work considers anycast packet forwarding scheme.

3 Network model

We consider unicast and multicast in unreliable, sleep-

scheduled wireless mesh networks. Such networks cover a

large range of applications, including for example acoustic

wireless sensor networks for ecosystem monitoring [13] or

ZigBee based wireless mesh networks [4]. We target at

designing new mechanisms to speed up successful data

delivery with a high probability. We make the following

assumptions.

• Network model. We model the network as a directed

graph G(V, E) where V is the set of nodes in the

network and E is the set of links between nodes. Node

vi0 is one of node vi’s neighbors only if ðvi; vi0 Þ 2 E. Let

N(vi) denote the set of node vi’s neighbors, i.e.,

NðviÞ ¼ fvi0 jðvi; vi0 Þ 2 Eg. For unicast, we assume that

s and d0 are the source node and destination node,

respectively. For multicast, let s be the source node and

DS ¼ fd1; d2; . . .; dNg be the set of destination nodes.

• Sleep scheduling. To save energy, we assume that the

network adopts a sleep-wake schedule. We assume that

time is slotted, and at the beginning of each time slot,

each node falls asleep or wakes up independently. Let

p be the probability that node vi is in active mode at any

give time slot. This assumption is very generic since

whenever energy is not a concern for the network, we

can set p = 1 for all vi 2 G. We assume that if all nodes

in the network are in active mode, the whole network

must be connected, i.e., we exclude the case that no path

can be found between a given source-destination pair.

• Source messages. Due to the computational complexity

introduced by coding, we assume that the whole data

stream is divided into multiple segments and coding

operations are performed on the packets within one

segment instead of the whole data stream. Let n be the

number of native packets within one segment, and let

Xm ¼ fxm
1 ; x

m
2 ; . . .; xm

n g be the set of native packets

belonging to the m-th segment.

For easy reference, we list the main notations used in the

rest of the paper in Table 1.

4 Coded anycast packet forwarding scheme

4.1 Overview of the CAPF scheme

A deterministic path between a source node and a destination

over low duty-cycle wireless mesh networks may have a

large delay and a high packet lost rate due to the sleep

scheduling and unreliable radio links. In order to utilize the

broadcast feature of wireless communication, CAPF

employs an anycast packet forwarding scheme where each

intermediate node along the path from the source node to the

destination node maintains multiple next hops in its for-

warding set.

To determine the forwarding set at each intermediate

node, CAPF employs a virtual path, a concept that defines

fowarding candidates along the path from the source node

to the destination node. Such a virtual path not only

identifies the forwarding set but also limits the area for

message propagation so that communication overhead is

controlled. The detail of virtual path construction will be

introduced in Sect. 4.2.

Wireless Netw (2011) 17:1273–1285 1275

After a virtual path is constructed, CAPF can use any-

cast along the virtual path to speed up packet propagation.

It can further use coding, e.g., source coding or network

coding, to enhance reliability. The coding and packet for-

warding procedures will be introduced in Sect. 4.3.

4.2 Bootstrapping: virtual path construction

In this section, we consider the construction of the virtual

path in multicast. The unicast case is just a special case of

the multicast case, where there is only one destination node

in the destination set DS.

The basic idea of virtual path is to identify forwarding

nodes which are not too far away from either the source

node or the destination node. The virtual path is con-

structed during the bootstrapping stage. During this phase,

all nodes are required to remain active. Since the boot-

strapping is a one-time task, its control overhead and the

energy cost are at the second-order consideration. After this

bootstrapping stage, nodes can sleep and wake up inde-

pendently to save energy.

The virtual path between a given pair of source and

destination nodes, denoted by s and dr 2 DS respectively,

can be constructed with a bi-directional search, which is

introduced as follows.

(1) The source node s broadcasts a beacon message to the

destination nodes in DS, where the beacon message

stores the current time.

(2) When destination dr 2 D receives the first beacon

message originated from s; dr calculates the delay the

beacon has experienced from s to dr, denoted by Ts;dr
,

and broadcasts another beacon message to s.

(3) For an intermediate node vi, if Ts;vi
þ Tdr ;vi

\
aTs;dr

; vi is considered to belong to the virtual path

from s to dr, where Ts;vi
ðTdr ;vi

Þ denotes the delay

when s(dr) sends its beacon until vi receives the first

beacon originated from s (dr), and a is the parameter

that is used to constrain the width of the virtual path.

The larger the a value, the wider the virtual path.

Note that, with the above approach, the virtual path from

the source s to the destination nodes in DS forms a mesh

structure, where a node in the virtual path may act as a

forwarder to multiple destinations in DS.

Figure 1 shows an example of the virtual path from the

source node s to one destination node dr. All nodes falling

within the dotted area form a virtual path that will be used

for message propagation between s and dr.

After constructing the virtual path, we can form the

virtual layers along the virtual path as follows.

Definition 1 (Virtual layers) Moving in the direction

from the source to a destination in DS, the source node s is

at layer 0. The neighbors of s that are on the virtual path are

at layer 1, and the neighbors of layer-i nodes belonging to

the virtual path are at layer i ? 1, and so on.

For unicast, by using the source node to broadcast a

beacon message towards the destination along the virtual

path, the virtual layers from the source node to the desti-

nation node can be formed with the algorithm in [15]. We

omit this detail due to its triviality. For multicast, we can

unite all virtual paths from the source to the destinations as

a ‘‘super’’ virtual path. Then virtual layers from the source

node to the destination nodes can be formed by requiring

the source node to broadcast a beacon message within the

‘‘super’’ virtual path.

Compared with the layered architecture proposed in [20]

where the nodes with the same hop count to the base station

are grouped into the same layer, i.e., the source node is at

layer 0, the nodes that are one-hop away from the source

Table 1 Main notations and their descriptions

a The parameter for adjusting the width of a virtual path

dr The destination node r

DS The set of destination nodes

f m
k0 The k0-th coded packet having the information of packets

belonging to the m-th segment

F(vi) The forwarding set of node vi

vi Node i in the network

Lr
j The set of nodes at virtual layer j towards destination r

M The number of virtual layers for a given

source-destination pair (s, d0), in consideration

N(vi) The set of neighbors of node vi

N The total number of destinations in DS, i.e., N = |DS|

n The number of native packets in one segment

s The source node

p The probability that a node is in active mode at

a given time slot

q The link loss probability of the lossy channel

Xm The set of native packets belonged to the m-th segment

tb The duration of one time slot

tc The transmitting time of one packet

Dt Time interval between two consecutive packets from a source

Fig. 1 The virtual path from s to dr, shown within the dotted lines

1276

are at layer 1, and so on, our proposed virtual path/layer

construction is more flexible and can identify appropriate

forwarding nodes more efficiently. Note that if we set the a
to infinity, our method will be the same as that in [20].

4.3 Packet forwarding

(1) Basic operations: CAPF uses anycast as the basic

message forwarding method. Simply put, the source

node s broadcasts a message, and any nodes at virtual

layer 1 that are in active mode may receive the

message. With node coordination at the same virtual

layer, one active node will be selected to broadcast

the message to the next virtual layer. Any nodes in the

next virtual layer that are in active mode may receive

the message. The same process repeats until the

destination node(s) receive the message. In the

sequel, we will introduce the node coordination at a

virtual layer and the different coding schemes to

enhance the reliability of the basic anycast scheme.

(2) Node coordination: A virtual layer may include

multiple active nodes. If all active nodes sends the

packet, collision may occur at the receiving nodes at

the next virtual layer.

By requiring active nodes at the next virtual layer to

periodically send a live beacon message, the current

sending node can know which neighbors in the forwarding

set are active or successfully receive the packets. Then the

transmission collision can be resolved by allowing only

one active next hop that hears the packet to forward the

packet according to some given rules.

As the same as in [5], we assume that the active node that

has the highest node ID or highest weight among all active

nodes at the same virtual layer is used to forward the

message, where the weight of a node is the pre-defined

priority value for the node [5]. If network coding is used [6],

we can add an extra rule that the active node which has the

most number of innovative coded packets among all active

nodes at the same virtual layer is allowed to broadcast.

To ease the following description, let Lr
j ¼ fvj0

1
; vj0

2
; � � �g

be the set of nodes that are at virtual layer j towards des-

tination dr. For an active node vi at virtual layer j, let F(vi)

be its neighboring nodes that are at virtual layer j ? 1. We

call F(vi) the forwarding set of vi. Node vi is allowed to

broadcast only if at least one node in F(vi) wakes up.

4.4 Coded anycast packet forwarding

To enhance the end-to-end reliability, we code the packets

transmitted with the anycast packet forwarding scheme.

For this purpose, we divide the data stream into segments

with each having n packets. As the basic requirement, the

coding scheme should allow the destination node to decode

a segment after it receives at least n out of n ? k coded

packets for the same segment.

Different coding schemes, e.g., source coding or net-

work coding, could be employed to fulfill this task.

(1) Source coding: If source coding is adopted, the source

node can code the original n packets into n ? k coded

packets and use anycast as described above to

transmit the n ? k coded packets to the destination.

Many source code such as Reed-Solomon (RS) codes

[16], Low-Density Parity-Check (LDPC) Codes [17]

and random linear codes at the source node can serve

the purpose.

(2) Network coding: If network coding [6] is used, At the

source node, since the data stream is divided into

segments, random linear coding operations are only

performed on packets within the same segment. Let

f m
k0 be a coded packet which randomly codes the

packets belonging to the m-th segment.

At an intermediate active node vi at virtual layer j [0,

suppose that it receives a coded packet f m
k0 from another

active node at the virtual layer j - 1. The following pro-

cedures will be conducted at node vi.

• First, node vi compares the segment sequence of packet

f m
k0 with the highest segment sequence number it has

seen so far.

• If the latest segment sequence that node vi has seen so

far is higher than m, which means that it has already

forwarded coded packets belonging to m-th segment,

node vi discards packet f m
k0 . Otherwise, node vi will

check whether f m
k0 is innovative [6] with respect to the

m-th segment. If f m
k0 is not an innovative packet, node vi

discards the packet as well.

• Otherwise, node vi first maintains f m
k0 in its buffer,

and combines the new packet f m
k0 with its previously-

buffered packets that also belong to the m-th segment

into a new coded packet. It waits until at least one

of the nodes in its forwarding set wakes up, and

then broadcasts the coded packets if the rules

regulated in the node coordination section are

satisfied.

At the destination node dr, after receiving a coded

packet f m
k0 , it checks whether this coded packet is inno-

vative with respect to the same segment. If yes, node dr

buffers f m
k0 ; otherwise, dr discards it. After receiving

n innovative coded packets belonging to the same seg-

ment, node dr can successfully decode the original packets

in the segment.

1277

5 Analysis on reliability and expected end-to-end delay

5.1 Reliability

We first consider unicast from source s to a destination d0.

Definition 2 Reliability from the source s to a destination

d0, denoted by Rd_0, is defined as the probability that the

packets in one data segment sent by s can be correctly

recovered at the destination d0.

Let L0
i denote the set of nodes at the virtual layer i and

li = |L0
i|, i.e., li represents the number of nodes at the

virtual layer i. To simplify presentation, we assume that

any node at the virtual layer i can communicate with any

node at virtual layers i - 1 and i ? 1. Without this

assumption, analytical results can still be obtained fol-

lowing the same steps in our analysis, but the notation will

become complex, since each node would need to keep

track of its own forwarding set at the next virtual layer.

Without loss of generality, we regard the source node s and

destination node d0 as at the virtual layer 0 and the virtual

layer M, respectively.

Let Pi be the probability that a given packet is suc-

cessfully delivered from the virtual layer i to the virtual

layer i ? 1. This probability is equal to the probability that

when j (1 B j B li?1) nodes wake up at the next virtual

layer, at least one node correctly receives the packet.

Therefore, we have

Pi ¼
Xliþ1

j¼1

li þ 1

j

� �

2liþ1�1
ð1� q jÞ ð1Þ

The probability P that a given packet is correctly

received by the destination d0 can be calculated as:

P ¼
YM�1

i¼0

Pi ð2Þ

We next derive the reliability from the source to the

destination. To this end, we assume that the coding scheme

possesses the property that once the destination correctly

receives at least n coded packets, it can successfully decode

the original segment.

To ease analysis, we only consider the case of source

coding such that for every segment, the source s sends out

n ? k coded packets, and the destination can decode the

segment as long as it correctly receives at least n coded

packets. For the case of network coding, although

approximate analysis can be obtained by approximating the

path from the source to the destination as a broadcast

channel and performing random linear code at the source

[19], the exact analysis with network coding is hard to

obtain since we need to track innovative packets at each

virtual layer. We leave it as an open problem.

To derive Rd_0, we need to calculate the probability that

the destination successfully receives at least n coded

packets after the source s sends out n ? k coded packets,

which is,

Rd0
¼
Xnþk

j¼n

nþ k
j

� �
Pjð1� PÞnþk�j ð3Þ

For multicast, we define different metrics regarding

reliability, which can be calculated with the above

analytical results.

Definition 3 Average reliability of a multicast group with

the source s and the destination set DS, denoted by Ar(DS),

is defined as the average value of the reliabilities from the

source s to the destination nodes in DS. Formally,

ArðDSÞ ¼ 1

N

X

dr2DS

Rdr
; ð4Þ

where N = |DS|.

Definition 4 Worst reliability of a multicast group with

the source s and the destination set DS, denoted by Wr(DS),

is defined as the minimum value of the reliabilities from

the source s to the destination nodes in DS. Formally,

WrðDSÞ ¼ min
dr2DS

Rdr
ð5Þ

5.2 Expected end-to-end packet delay

We next consider the expected end-to-end packet delay

from the source s to a given destination d0. Following the

same assumption as above and letting Di denote the delay

the packet experienced at the virtual layer

i; i ¼ 0; 1; . . .;M � 1. We have

E½Di� ¼
X1

h¼0

ðhtb þ tcÞð1� pÞhliþ1 1� ð1� pÞliþ1

� �
ð6Þ

The first item htb ? tc represents the waiting time of

the packet at the virtual layer i plus the time for transmitting

the packet. The second item ð1� pÞhliþ1 represents the

probability that none of the nodes at the next virtual layer is

active for up to h time slots, and the last item ð1� ð1� pÞliþ1Þ
is the probability that at least one node at the next virtual

layer is active at (h ? 1)-th time slot, which is the condition

that the packet can be forwarded to the next layer.

Since the end-to-end delay D =
P

i=0
M-1 Di, by the line-

arity of expectation, we have the expected end-to-end

packet delay

1278

E½D� ¼
XM�1

i¼0

E½Di�

¼
XM�1

i¼0

X1

h¼0

ðhtb þ tcÞð1� pÞhliþ1 1� ð1� pÞliþ1

� �

¼
XM�1

i¼0

tbð1� pÞliþ1

1� ð1� pÞliþ1
þ tc

 !

¼ tb

XM�1

i¼0

ð1� pÞliþ1

1� ð1� pÞliþ1
þM � tc

ð7Þ

Note that E[D] is meaningful only when the packet is

successfully delivered from the source to the destination.

5.3 Expected end-to-end segment delay

We then derive the expected end-to-end segment delay

from the source s to a given destination d0, i.e., the

expected delay from s sends out the first coded packet in a

segment until the destination d0 recovers all n packets in

the segment.

Let Dt be the time interval between two consecutive

packets sent out from s. To help understanding, Fig. 2

illustrates the time axis for the packet propagation. For

example, if the n-th coded packet received at the destina-

tion d0 is the j-th packet sent from s where j C n, then the

end-to-end segment delay is ðj� 1ÞDt þ D, where D is the

end-to-end packet delay whose expectation can be calcu-

lated with Eq. 7.

Let P0j be the probability that the n-th coded packet

received at the destination is the j-th packet (j C n) sent

from the source. In other words, the destination has suc-

cessfully received n - 1 packets out of the first j - 1

packets sent from the source, and it also successfully

receives the j-th packet. It is easy to obtain:

P0j ¼
j� 1

n� 1

� �
Pn�1ð1� PÞðj�1Þ�ðn�1ÞP

¼
j� 1

n� 1

� �
Pnð1� PÞj�n;

ð8Þ

where j C n and P can be calculated with Eq. 2. The term

j� 1

n� 1

� �
Pn�1ð1� PÞðj�1Þ�ðn�1Þ

denotes the probability

that the destination has successfully received n - 1 pack-

ets out of j - 1 packets, and the last term P denotes the

probability that the destination successfully receives the

j-th packet.

Let Sd_0 be the end-to-end segment delay from the

source s to the destination d0. We therefore have:

E½Sd0
� ¼

Xnþk

j¼n

ðj� 1ÞDtP0j þ E½D� ð9Þ

Note that similar to the expected end-to-end packet

delay, E(Sd0
) is meaningful only when at least n coded

packets for a segment are received by the destination d0.

For multicast, we define different metrics to evaluate

segment delay, which can be calculated with above ana-

lytical results.

Definition 5 Average segment delay of a multicast group

with the source s and the destination set DS, denoted by

Asd(DS), is defined as the average value of the expected

end-to-end segment delay from s to the destination nodes in

DS. Formally,

AsdðDSÞ ¼ 1

N

X

dr2DS

E½Sdr
� ð10Þ

where N = |DS|.

Definition 6 Worst segment delay of a multicast group

with the source s and the destination set DS, denoted by

Wsd(DS), is defined as the maximum of the expected end-

to-end segment delay from s to the destination nodes in DS.

Formally,

WsdðDSÞ ¼ max
dr2DS
fE½Sdr

�g ð11Þ

5.4 Tradeoff between reliability and expected end-to-end

segment delay

Clearly, both the reliability and the expected end-to-end

delay depend on k, which is determined by the coding

Fig. 2 The time axis of packet

propagation

1279

scheme. By adjusting the k value, we thus obtain a mech-

anism to make tradeoff between the reliability and the end-

to-end delay.

As one example, if a given reliability Rd_0 is required,

i.e, Rd_0 C b, we can minimize the expected end-to-end

segment delay E[Sd_0] as follows:

min
k

E½Sd0
�

subject to:

Rd0
� b

k [0;

where b is the given threshold to constrain reliability, i.e.,

0 \b B 1.

As another example, if we constrain the expected end-

to-end segment delay E[Sd0
], the reliability Rd0

can be

maximized as follows:

max
k

Rd0

subject to

E½Sd0
� � c

k [0;

where c is the given threshold for the expected end-to-end

segment delay.

6 Performance evaluation

In this section, we demonstrate the effectiveness of our CAPF

scheme through simulations. In our simulations, we generate

a connected network, in which 80 nodes are randomly

deployed in a two-dimensional (2D) space. The source node

and the destination node(s) are random selected. We divide

the whole data content to be sent into multiple segments

where each segment has n packets. After the bootstrapping

stage, at each time slot, each node is in active mode with the

probability of p. Link loss probability is set to be q.

To demonstrate the advantage of CAPF, we introduce

five baseline schemes, namely, optimal anycast scheme,

anycast scheme, coded opportunistic scheme, coding

scheme, and no-anycast-no-coding scheme. We briefly

introduce how these four schemes operate in unicast and

multicast cases.

• Optimal anycast scheme. The optimal anycast scheme

proposed in [5] is an anycast based algorithm, which

selects the forwarding set and prioritizes the next hops

in the forwarding set by a dynamic programming based

approach to minimize the end-to-end delay. Since this

scheme is only used for unicast, we will only compare

it with CAPF for unicast.

• Anycast scheme. The only difference between this

scheme and our CAPF scheme is that the packets

propagated from the source node to the destination(s)

are not coded. The path used in this scheme is the same

as in our CAPF scheme.

• Coded opportunistic scheme. This scheme is proposed in

[14], which allows multiple next hops in the forwarding

set to encode the received packets and send them out.

• Coding scheme. This scheme does not use anycast. For

the case of unicast, the Dijkstra algorithm is used to find

the shortest path from the source node to the destination

node. For the case of multicast, the algorithm proposed

in [18] is used to find the minimum cost multicast tree,

where the cost of the link is defined as the hops. In

addition, the source coding operation as in the CAPF

scheme is conducted.

• No-anycast-no-coding scheme. This scheme constructs

the routing path using the same approach as in the

above coding scheme. However, the packets propagated

from the source to the destination(s) are not coded.

Each simulation result is based on 120 simulation

instances, and is presented with 95% confidence interval.

6.1 The comparison of segment delay

between simulation results and analytical results

We first demonstrate the effectiveness of the proposed

CAPF scheme with source coding by comparing the seg-

ment delay obtained through simulation with the analytical

results. We vary the threshold a in the range of 1.0, 3.0 for

k ¼ 30; p ¼ 0:8; q ¼ 0:1; tb ¼ 1; tc ¼ 2;Dt ¼ 5.

In the first setting, we evaluate the segment delay in

unicast under two cases: n = 10 and n = 20. As shown in

Fig. 3, the segment delay obtained by our simulation is

1 1.5 2 2.5 3
80

100

120

140

160

180

200

220

The theshold α

O
ne

 s
eg

m
en

t d
el

ay

Theoretical delay with $n=10$
Simulate delay with $n=10$
Theoretical delay with $n=20$
Simulate delay with $n=20$

Fig. 3 The segment delay versus the threshold a for unicast

1280

very close to the analytical result. We can also see that the

segment delay decreases with the increase of a, because the

virtual path becomes wider and thus the number of can-

didate forwarders at each virtual layer becomes larger,

which decreases the waiting delay at each hop. In addition,

with the increase of n, the delay for one segment data

increases since the number of native packets needed to

send in one segment increases.

In the second setting, we evaluate the segment delay in

multicast by setting N = 10, n = 10. Figure 4 gives both

the worst segment delay and the average segment delay. As

in unicast case, the segment delay obtained by our simu-

lation is also close to the analytical results in multicast, and

the segment delay decreases with the increase of a.

6.2 The comparison of reliability between simulation

results and analytical results

We then evaluate the reliability of the CAPF scheme with

source coding by comparing the simulation results with the

analytical results. We vary the link loss probability q in the

range of [0.0, 0.30] for a = 1.5, n = 10.

In the first setting, we evaluate the reliability in unicast

under two cases: k = 10 and k = 15. As shown in Fig. 5,

the reliability obtained by the simulation is close to the

analytical result. We also can see that the reliability

decreases with the increase of the link loss probability q,

because the packet will be lost with higher probability. In

addition, the reliability with a larger k value is higher than

that with a smaller k value. This is because the number of

coded packets originated from s with a larger k is more than

that with a smaller k, which thus increases the probability

that the destination node successfully recovers n original

packets in one segment.

In the second setting, we evaluate the reliability in

multicast with N = 10. As shown in Fig. 6, both the worst

reliability and the average reliability in our simulation are

very close to that with theoretical results.

6.3 The impact of awake probability on segment delay

We now study the impact of sleep scheduling on the seg-

ment delay under different packet forwarding schemes.

To fairly compare the performance, for non-coding

schemes, e.g., optimal anycast scheme, anycast scheme and

no-anycast-no-coding scheme, each packet in one segment

will be sent dnþk
n e times from the source s so as to guarantee

at least n ? k transmissions for each segment. We vary the

awake probability of network nodes in the range of [0.75,

1.0] for n ¼ 20; q ¼ 0:1; tb ¼ 1; tc ¼ 2;Dt ¼ 5; a ¼ 2:5.

1 1.5 2 2.5 3
50

100

150

200

The theshold α

O
ne

 s
eg

m
en

t d
el

ay

Theoretical worst segment delay
Simulate worst segment delay
Theoretical average segment delay
Simulate average segment delay

Fig. 4 The segment delay versus the threshold a for multicast

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The link loss probability

T
he

 r
el

ia
bi

lit
y

Theoretical reliability with k=10
Simulate reliability with k=10
Theoretical reliability with k=15
Simulate reliability with k=15

Fig. 5 The reliability versus the link loss probability q for unicast

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The link loss probability q

T
he

 r
el

ia
bi

lit
y

Theoretical worst reliability
Simulate worst reliability
Theoretical average reliability
Simulate average reliability

Fig. 6 The reliability versus the link loss probability q for multicast

1281

Firstly, we evaluate the performance of the segment

delay for unicast with k = 30. From Fig. 7, we can see that

the segment delay with each of these schemes decreases

with the increase of the awake probability, because the

waiting delay at each hop decreases. We also can see that

the segment delay with our CAPF scheme is the least

among all the schemes.

Note that although with coded opportunistic scheme, its

reliability for transmitting one packet to the destination

might be better than other schemes, its segment delay does

not perform the best. This is because to avoid collision,

with coded opportunistic scheme, the current sending node

cannot transmit the next packet until all the next hops finish

their transmissions. Thus, more delay will be incurred by

waiting the next hops’ transmissions. Specifically, when

the link loss probability is low, the segment delay with

coded opportunistic scheme might be intolerable for delay-

sensitive applications.

Secondly, we evaluate the performance of average

segment delay and worst segment delay for multicast with

k = 50 and N = 10. As shown in Fig. 8 where we omit the

confidence intervals to clarify the figure, the segment delay

with each of these schemes decreases with the increase of

the awake probability, and the segment delay of our CAPF

scheme is the smallest, evaluated with respect to both

average segment delay and worst segment delay.

6.4 The tradeoff between delay and reliability

We now study the tradeoff between delay and reliability of

our CAPF scheme with source coding. We vary the value

of k in the range of [5, 50] for n ¼ 20; p ¼ 0:8; q ¼
0:1; tb ¼ 1; tc ¼ 2;Dt ¼ 5; a ¼ 2:5.

In the first setting, we evaluate the tradeoff in unicast.

From Fig. 9, we can see that the reliability increases with

the increase of k, because the number of coded packets

0.75 0.8 0.85 0.9 0.95 1

50

100

150

200

250

300

The awake probability

O
ne

 s
eg

m
en

t d
el

ay

CAPF scheme
Optimal anycast scheme
Anycast scheme
Coded opportunistic scheme
Coding scheme
No−anycast−no−coding scheme

Fig. 7 The segment delay versus the awake probability p for unicast

0.75 0.8 0.85 0.9 0.95 1
100

150

200

250

300

350

400

The awake probability

O
ne

 s
eg

m
en

t d
el

ay

(a) Worst segment delay

CAPF scheme
Anycast scheme
Coded opportunistic scheme
Coding scheme
No−anycast−no−coding scheme

0.75 0.8 0.85 0.9 0.95 1

100

150

200

250

300

350

400

The awake probability

O
ne

 s
eg

m
en

t d
el

ay

(b) Average segment delay

CAPF scheme
Anycast scheme
Coded opportunistic scheme
Coding scheme
No−anycast−no−coding scheme

Fig. 8 The segment delay versus the awake probability p for multicast

Fig. 9 The segment delay and reliability versus the value of k for

unicast

1282

increases, which thus increases the probability that the

destination node successfully recovers the n original

packets of a segment. However, with the increase of k, the

segment delay increases because it takes longer time for the

source node to finish sending the packets of one segment.

We then evaluate the tradeoff between worst (average)

segment delay and reliability for multicast with N = 10 in

Fig. 10 (Fig. 11, respectively). We can observe the similar

tradeoff as in the unicast case.

6.5 The comparison between source coding

and network coding

We now study the segment delay and reliability in multi-

cast with source coding and network coding for

N ¼ 10; n ¼ 10; k ¼ 20; p ¼ 0:8; tb ¼ 1; tc ¼ 2; Dt ¼ 5.

Firstly, we study the segment delay by varying the

threshold a in the range of [1.0,3.0] with q = 0.1. Fig-

ures 12a, b give the worst and average segment delay of

CAPF with coding over GF(28) and GF(25), respectively.

To clarify the results, we omit the confidence intervals in

this figure. We can see that when the Galois field is GF(28),

the segment delay with source coding is very close to that

with network coding. Although network coding may

increase the linear independence of source coding, the

impact is negligible when the Galois field is GF(28),

because in this case the packets generated with source

coding are linearly independent with a very high proba-

bility [21]. Thus, the packets with source coding and net-

work coding are both linearly independent with the coded

packets buffered at the destination(s) with a very high

probability. In addition, the packet propagation delay with

source coding is the same as that with network coding. So,

when the Galois field is GF(28), source coding and network

coding have the similar segment delay. However, when the

Galois field is GF(25), network coding, to some extent,

Fig. 10 The worst segment delay and reliability versus the value of

k for multicast

Fig. 11 The average segment delay and reliability versus the value of

k for multicast

1 1.5 2 2.5 3
80

90

100

110

120

130

140

150

160

170

The theshold α

O
ne

 s
eg

m
en

t d
el

ay

(a) With GF(28)

Worst segment delay with source coding
Worst segment delay with network coding
Average segment delay with source coding
Average segment delay with network coding

1 1.5 2 2.5 3
80

90

100

110

120

130

140

150

160

170

180

The theshold α

O
ne

 s
eg

m
en

t d
el

ay

(b) With GF(25)

Worst segment delay with source coding
Worst segment delay with network coding
Average segment delay with source coding
Average segment delay with network coding

Fig. 12 The segment delay versus the threshold a for multicast

1283

increases the probability of the linear independence of

packets generated with source coding, and thus decreases

the segment delay.

In Fig. 13, we study the worst (average) reliability with

both source coding and network coding by varying the link

loss probability q in the range of [0.15, 0.4] with a = 1.5.

We can observe the similar results as in the segment delay.

7 Conclusions

In this paper, we propose a coded anycast packet for-

warding (CAPF) scheme. To reduce the end-to-end delay,

CAPF allows an intermediate node to maintain multiple

next hops in its forwarding set. The sending node only

needs to wait for any one of the next-hop nodes to wake up.

Anycast alone, however, cannot support a good balance

between end-to-end delay and reliability. To enhance the

end-to-end reliability, CAPF introduces coding operations

during packet propagation. To evaluate the performance of

CAPF, we theoretically analyze the end-to-end delay, the

reliability, and the tradeoff between them. Simulation

results demonstrate that CAPF can provide a flexible

mechanism to make good delay-reliability tradeoff and is

effective to reduce the end-to-end delay and enhance the

reliability.

Acknowledgments This paper was supported by the National

Natural Science Foundation of China (NSFC) under Grant No.

61073038, and the National High-Tech Research and Development

Plan of China under Grant No. 2009AA01A348.

References

1. Lu, G., Sadagopan, N., Krishnamachari, B., & Goel, A. (2005).

Delay efficient sleep scheduling in wireless sensor networks. In

Proceedings of the 24th annual joint conference of the IEEE
computer and communications societies, INFOCOM, Miami, FL,

USA, pp. 2470–2481.

2. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient

MAC protocol for wireless sensor networks. In: Proceedings of
the 21st annual joint conference of the IEEE computer and
communications societies, INFOCOM, Vol. 3, pp. 1567–1576.

3. Wireless mesh networking zigbee versus digimesh, available

online: http://www.digi.com/pdf/wp_zigbeevsdigimesh.pd..

4. Liang, N., Chen, P., Sun, T., Yang, G., Chen, L., & Gerla, M.

(2006). Impact of node heterogeneity in ZigBee mesh network

routing. In: IEEE international conference on systems, man and
cybernetics, SMC ’06, 1, pp 187-191.

5. Kim, J., Lin, X., Shroff, N. B., & Sinha, P. (2010). Minimizing

delay and maximizing lifetime for wireless sensor networks with

anycast. IEEE/ACM Transactions on Networking, 18(2), 515–528.

6. Ahlswede, R., Cai, N., yen Robert Li, S., Yeung R. W., Member,

S., & Member, S. (2000). Network information flow. IEEE
Transactions on Information Theory, 46, 1204–1216.

7. Lun, D. S., Medard, M., & Koetter, R. (2006). Network coding

for efficient wireless unicast. In: Proceedings of the international
Zurich seminar on communications, pp. 74–77.

8. Zhan, C., Xu, Y., Wang, J., & Lee, V. (2009). Reliable multicast

in wireless networks using network coding. In Proceedings of the
6th international conference on mobile Adhoc and Sensor sys-
tems, MASS, Macau, China, pp. 506–515.

9. Ghaderi, M., Towsley, D., & Kurose, J. (2008). Reliability gain

of network coding in lossy wireless networks. In Proceedings of
the 27th IEEE conference on computer communications,

pp. 2171–2179.

10. Chachulski, S., Jennings, M., Katti, S., & Katabi, D. (2007).

Trading structure for randomness in wireless opportunistic rout-

ing. In Proceedings of the 2007 conference on applications,
technologies, architectures, and protocols for computer commu-
nications, SIGCOMM. New York, USA: ACM, pp. 169–180.

11. Biswas, S., & Morris, R. (2004). Opportunistic routing in multi-

hop wireless networks. SIGCOMM Computer Communication
Review, 34(1), 69–74.

12. Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding

(GeRaF) for ad hoc and sensor networks: Energy and latency

performance. IEEE Transactions on Mobile Computing, 2(4),

349–365.

13. Wang, H. (2006). Wireless sensor networks for acoustic moni-
toring. Ph.D. dissertation, University of California at Los

Angeles.

14. Lin, Y., Li, B., & Liang, B. (2008). Codeor: Opportunistic routing

in wireless mesh networks with segmented network coding. In

Proceedings of the 16th IEEE international conference on net-
work protocols, Florida, pp. 13–22.

15. Liu, C., Wu, K., Xiao, Y., & Sun, B. (2006). Random coverage

with guaranteed connectivity: Joint scheduling for wireless sensor

0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The link loss probability

T
he

 r
el

ia
bi

lit
y

(a) With GF(2 8)

Worst reliability with source coding
Worst reliability with network coding
Average reliability with source coding
Average reliability with network coding

0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The link loss probability

T
he

 r
el

ia
bi

lit
y

(b) With GF(25)

Worst reliability with source coding
Worst reliability with network coding
Average reliability with source coding
Average reliability with network coding

Fig. 13 The reliability versus

the link loss probability q for

multicast

1284

http://www.digi.com/pdf/wp_zigbeevsdigimesh.pd

networks. IEEE Transactions on Parallel and Distributed Sys-
tems, 17(6):562–575.

16. Wicker, S. B. (2004). Reed-solomon codes and their applications.

New York: IEEE Press.

17. Gallager, R. G. (1963). Low-density parity-check codes.

Camberidge, MA: MIT Press.

18. Nguyen, U. T. (2008). On multicast routing in wireless mesh

networks. Computer Communications 31(7):1385–1399.

19. Swapna, B. T., Eryilmaz, A., & Shroff, N. (June 2010).

Throughput-delay analysis of random linear network coding for

wireless broadcasting. In Proceedings of the 2010 IEEE inter-
national symposium on network coding (NetCod 10), Toronton.

20. Ding, J., Sivalingam, K., Kashyapa, R., & Chuan, L. J. (2003). A

multi-layered architecture and protocols for large-scale wireless

sensor networks. In Proceedings of IEEE 58th vehicular tech-
nology conference, October 6–9, Vol. 3, pp 1443–1447.

21. Ma, G., Xu, Y., Lin, M., & Xuan, Y. (2007, January). A Content

Distribution system based on sparse linear network coding. In

Proceedings of the third workshop on network coding (Netcod).

Author Biographies

Xiumin Wang received her

B.S. from the Department of

Computer Science, Anhui Nor-

mal University, China, in 2006.

She is currently working toward

the Ph.D. degree at the School

of Computer Science and

Technology, University of Sci-

ence and Technology of China,

Hefei, China. She is also under a

joint Ph.D. program offered by

University of Science and

Technology of China and City

University of Hong Kong. Her

research interests include wire-

less networks, routing design, and network coding.

Kui Wu received the B.Sc. and

the M.Sc. degrees in Computer

Science from Wuhan Univer-

sity, China in 1990 and 1993,

respectively, and the Ph.D.

degree in Computing Science

from the University of Alberta,

Canada, in 2002. He joined the

Department of Computer Sci-

ence at the University of Vic-

toria, Canada in the same year

and is currently an Associate

Professor there. His research

interests include mobile and

wireless networks, network

performance evaluation, and network security.

Jianping Wang received the

B.Sc. and the M.Sc. degrees in

computer science from Nankai

University, Tianjin, China in

1996 and 1999, respectively,

and the Ph.D. degree in com-

puter science from the Univer-

sity of Texas at Dallas in 2003.

She is currently an assistant

professor at the Department of

Computer Science, City Uni-

versity of Hong Kong. Jian-

ping’s research interests include

optical networks and wireless

networks.

Yinlong Xu received his B.S. in

Mathematics from Peking Uni-

versity in 1983, and MS and

Ph.D. in Computer Science

from university of Science and

Technology of China (USTC) in

1989 and 2004 respectively. He

is currently a professor with the

School of Computer Science

and Technology at USTC. Prior

to that, he served the Depart-

ment of Computer Science and

Technology at USTC as an

assistant professor, a lecturer,

and an associate professor.

Currently, he is leading a group of research students in doing some

networking and high performance computing research. His research

interests include network coding, wireless network, combinatorial

optimization, design and analysis of parallel algorithm, parallel pro-

gramming tools, etc. He received the Excellent Ph.D. Advisor Award

of Chinese Academy of Sciences in 2006.

1285

	CAPF: coded anycast packet forwarding for wireless mesh networks
	Abstract
	Introduction
	Related work
	Network model
	Coded anycast packet forwarding scheme
	Overview of the CAPF scheme
	Bootstrapping: virtual path construction
	Packet forwarding
	Coded anycast packet forwarding

	Analysis on reliability and expected end-to-end delay
	Reliability
	Expected end-to-end packet delay
	Expected end-to-end segment delay
	Tradeoff between reliability and expected end-to-end segment delay

	Performance evaluation
	The comparison of segment delay between simulation results and analytical results
	The comparison of reliability between simulation results and analytical results
	The impact of awake probability on segment delay
	The tradeoff between delay and reliability
	The comparison between source coding and network coding

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

